The Fermilab Holometer in Illinois is currently under construction and will be the world's most sensitive laser interferometer when complete, surpassing the sensitivity of the GEO600 and LIGO systems, and theoretically able to detect holographic fluctuations in spacetime.[1][2][3]
The Holometer may be capable of meeting or exceeding the sensitivity required to detect the smallest units in the universe called Planck units.[1] Fermilab states, "Everyone is familiar these days with the blurry and pixelated images, or noisy sound transmission, associated with poor internet bandwidth. The Holometer seeks to detect the equivalent blurriness or noise in reality itself, associated with the ultimate frequency limit imposed by nature."[2]
Craig Hogan, a particle astrophysicist at Fermilab, states about the experiment, "What we’re looking for is when the lasers lose step with each other. We’re trying to detect the smallest unit in the universe. This is really great fun, a sort of old-fashioned physics experiment where you don’t know what the result will be."
Experimental physicist Hartmut Grote of the Max Planck Institute in Germany, states that although he is skeptical that the apparatus will successfully detect the holographic fluctuations, if the experiment is successful "it would be a very strong impact to one of the most open questions in fundamental physics. It would be the first proof that space-time, the fabric of the universe, is quantized."[1]
The hypothesis that holographic noise may be observed in this manner has been criticized on the grounds that the theoretical framework used to derive the noise violates Lorentz-invariance. Lorentz-invariance violation is however is very strongly constrained already, an issue that has been very unsatisfactorily addressed in the mathematical treatment. [4]